A dynamic resource management in mobile agent by artificial neural network
نویسنده
چکیده
In this paper, a resource management for dynamic load balancing in mobile agent by artificial neural network scheme (ANN-DLB) is presented to maximize the number of the served tasks in developing high performance cluster. This dynamic load balance with the growth of the service type and user number in the mobile networks of the higher performance is required in service provision and throughput. Most of the conventional policies are used in load indices with the threshold value to decide the load status of the agent hosts by CPU or memory. The main factor influencing the workload is the competitions among the computing resources such as CPU, memory, I/O and network. There are certain I/O data of the intensive applications where load balancing becomes the important issue. This relationship between the computing resources is very complex to define the rules for deciding the workload. This paper proposed a new dynamic load balancing for evaluating the agent hosts’ workload with the artificial neural network (ANN). By applying the automatic learning of the back-propagation network (BPN) model can establish the ANN model and also can measure the agent host loading with five inputs: CPU, memory, I/O, network and run-queue length. The structure of the load balancing system is composed of three design agents: the load index agent (LIA), the resource management agent (RMA) and the load transfer agent (LTA). These experimental results reveal that the proposed ANN-DLB yields better performance than the other methods. These results demonstrate that the proposed method has high throughput, short response time and turnaround time, and less agent host negotiation complexity and migrating tasks than the previous methods. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملEstimating Efficiency of Bank Branches by Dynamic Network Data Envelopment Analysis and Artificial Neural Network
Network data envelopment analysis models assess efficiency of decision-making unit and its sections using historical data but fail to measure efficiency of its units and their internal stages in the future. In this paper we aim to measure efficiency of stages of bank branches and obtain efficiency trend of stages during the time, then to estimate their efficiency in the future therefore we can ...
متن کاملPolicy Model for Sharing Network Slices in 5G Core Network
As mobile data traffic increases, and the number of services provided by the mobile network increases, service load flows as well, which requires changing in the principles, models, and strategies for media transmission streams serving to guarantee the given nature of giving a wide scope of services in Flexible and cost-effective. Right now, the fundamental question remains what number of netwo...
متن کاملPredictability of Nurses Ethical Behavior from Human Resource Management Practices
Background: Today, commitment to ethical behavior is one of the most important concerns of patient care and medical field. The HR managers try to improve the ethical climate in this domain by using effective strategies and practices. Therefore, the aim of this study was to examine the predictability of nurses' ethical behavior by HRM activities by using the public health service networks. Metho...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Network and Computer Applications
دوره 33 شماره
صفحات -
تاریخ انتشار 2010